Brage Statfjord Revitalization
Subsurface Workflow during an Infill Well Project

Vincent Brotte, Force Seminar 11.05.17
Statfjord Revitalization

Agenda

- Introduction to Brage Statfjord
- Basis for new wells
- Static model
- Case Study: uncertainty handling during the lifetime of the project
 - Identify phase
 - Select phase
- Conclusion
On production since September 1993, Statfjord has contributed over 50% of the total Brage production (3 other reservoirs)

Concept: **Sand-Box** → connected reservoir

- Dead oil with common initial FWL and limited bottom aquifer: 60m oil column in South, less in North
- STOIIP ~ 53 MSm³ / RF >= 55%
- 13 historical producers: mostly long horizontal, near reservoir top (now 5 active in South)
- 2 main historical injectors: slanted perforated around and below the initial FWL (now 1 active in South)
Statfjord Revitalization

Basis for a Well Project in South

- Natural production decline: need for infill targets

Based on STOIIP estimates and historical production:
 - RF: 65% N vs 55% S → Potential in South
 - Backed-up by 4D seismic signal

- Explanations:
 - ratio of (injected water) / (pore volume)
 - well density

- Contingency for South injector failure

2014 - 1992

4D map: change in AI

hardening
softening
Statfjord Revitalization

Static Model (Pre Well Project)

Properties
- High sand proportion
- No well-well shale correlation
- Calcite nodules 2-4% of GRV

Grid
- High marker control
- Depth conversion (top surf.)
 - Error map
 - U: +/-3% in GRV (200 real.)
- Bounding faults U: +/-3% in GRV

Observations / Starting Point
- Logs from previous model

Chosen Option
- Keep all except new Sw logs (n,m - Archie)
- \(\rightarrow \) 3 J-functions for initialization
- \(\rightarrow \) 1 kept after early HM
- Facies: Sand / Shale (SIS) with VSP
- K/Phi: Gaussian sim. (shale inactive)
- NTG

Use most likely top surface
- Isochore down
- 50*50*1 m³ / no upscaling

Single Static Realisation: Base Case
Statfjord Revitalization

Identify Phase – Prove Feasibility

Manual HM (focus: South and oil prod.)
- sensible parameters: Kv/Kh, Rel perm
- need to include vertical baffle

Well Concept
- volume balance in South tank
- avoid closing current producers

Well Locations
- same strategy as hist. wells: 2D prob.
- limited number of tested configurations
- use 2D maps for producer

Drilling & Well Dept.

control from SCAL data
also seen in 4D seismic

result: 2 acceptable HMs

Well-Pair: 1 producer 1 injector

Simulation maps
Seismic attic oil map (4D map also)
Statfjord Revitalization

Identify Phase – Prove Feasibility

- Reserves estimate: field delta oil production - 6 cases
 - 2 HMs
 - Different prediction settings in the “Do Nothing” case (reservoir pressure)

Well-Pair

- Injector close to old producer, convenient slot (well cost)

Project approved
Select Phase – Optimize

Part 1: still using the base case static model and the 2 HMs

- Compare Well-Pair with other **concepts** (>10)
 - [1-2] new wells
 - use active wells for injection or short sidetracked prod.
 - economic screening

Well-Pair ranks best
Producer before injector

Injector location
- tested every 250 m

Move injector
~ 500 m South

cHECKED ON 4 REALISATIONS (2HMS, 1/0 BAFFLE)

Simulation baffle tested against synthetic 4D seismic

Baffle “confirmed” and mapped with 3D seismic

A subsidiary of BASF – We create chemistry
Statfjord Revitalization

Select Phase – Uncertainty

Part 2: more static realisations

Petrophysical update (unpredicted)
- core data is now stress corrected
- K/Phi correlation clarified

Workflow – “discrete” variables
- 25 static realizations: a: [1-25]
- 3 “dynamic sets”: b: [1-3]
 1 ➔ HMBC16 / 2 ➔ intermediate / 3 ➔ HMBC16_2
- 3 fault scenarios: c: [1-3]
 case name: XXX_a_b_c (all combinations)

Reserves Estimate
- cases assumed a priori equiprobable
- for each case - HM mark (criteria, OF)
- screening or “weighting”

From previous phase:
Kv/Kh
Rel. perm

225 “HMs”

4D baffle geometries

Fault Scenario
MULTFLT

SS_1_S
SS_1_N
1
0
0.05
0
1
0.05

2
3
Statfjord Revitalization

Select Phase – Posterior Analysis

Maps: posterior justification for the WP location

Impact of input variables

Project approved: wells to be drilled in 2017
Conclusion

- How is the uncertainty on the well-pair evaluation evolving during the project?
 - confidence is building up after each milestone (decision)
 - complexity and number of parameters is increasing

- The exercise of looking back at the full project workflow is performed too rarely
Brage Statfjord Revitalization
Subsurface Workflow during an Infill Well Project

Acknowledgements to Petech colleagues and our license partners:

Questions?