Geomechanical-induced 4D time shifts

Thomas Røste
Outline

• Why monitor overburden?

• Time shifts and geomechanics

• Field examples

• Summary
Why monitor overburden

- 4D seismic time shifts in overburden give information about depleted areas
- Independent of reservoir fluid changes
Outline

• Why monitor overburden?

• Time shifts and geomechanics

• Field examples

• Summary
Time shifts and geomechanics

- 4D seismic time shifts capture changes in both thickness (z) and velocity (v)
- Røste et al. (2005) and Hatchell et al. (2005) independently assumed*:

$$\frac{\Delta v}{v} \approx -R\epsilon_{zz}$$

* The dilation factor R is sometimes referred to as α. The relation is $R = -\alpha$.
Workflow for modelling time shifts

- Input:
 - Reservoir pressures
 (Eclipse model)
 - 4D geomechanical model:
 - Displacements
 - Stress changes
 - Strain (ε_{zz})

- Output:
 - Velocity changes (Δv)
 - Time shifts

$\Delta v / v \approx -R\varepsilon_{zz}$

Published in TLE by
Røste and Ke (2017)
Outline

• Why monitor overburden?

• Time shifts and geomechanics

• Field examples

• Summary
Max modelled subsidence (97-14) around 0.55 m

GPS (97-14) ~0.50 m

GPS (97-14) ~0.44 m

Published in TLE by Røste and Ke (2017)
Geomechanical model (97-14)

Max modelled subsidence (97-14) around 0.55 m

Published in TLE by Røste and Ke (2017)
Time Shifts (97-14) @BCU

Published in TLE by Røste and Ke (2017)
Time Shifts (97-09) @BCU

Should these faults be sealed?

Published in TLE by Røste and Ke (2017)
Modelled (R=15)

Should these faults be sealed?

Pressure depletion
Pressure increase

Seismic

Published in TLE by Røste and Ke (2017)
Cross-section intersecting an area with large time shifts

$$R \approx - \frac{\Delta v}{v} \frac{\epsilon_{zz}}{\epsilon_{zz}}$$
R inverted - Snorre

Cross-section intersecting an area with large time shifts

$R_{avg} \approx 40$

$R_{avg} \approx 8$

$R_{avg} \approx 8$

Seismic time shifts

Geomechanical model

$R \approx -\frac{\Delta v/v}{\epsilon_{zz}}$
Outline

• Why monitor overburden?

• Time shifts and geomechanics

• Field examples

• Summary
Summary

• Overburden geomechanical changes:
 - Occur for all fields
 - Might indicate depleted areas
 - Detected as 4D seismic time shifts

• Time shift workflow:
 - Useful for updating reservoir model
 - Indicates $R_{avg} \approx 15$ for overburden
Acknowledgments

• Ganpan Ke for fruitful discussions and geomechanical modelling input

• Several people for discussions, especially:
 Sascha Bussat, Lasse Renli, Martin Landrø, Kenneth Duffaut, Bård Bostrøm, Ola-Petter Munkvold, Øyvind Kvam, Ole K. Søreide, Svend Østmo, Odd Solheim, Colin MacBeth, Jon Lippard, Frank Aanvik, Torill Andersen, and Vibeke Haugen

• The Snorre, Statfjord, and Heidrun partnerships for permission to present this data
References

• Røste, T. and G. Ke, 2017, Overburden 4D time shifts — Indicating undrained areas and fault transmissibility in the reservoir: *The Leading Edge*.

• Røste, T., O.P. Dybvik, and O.K. Søreide, 2015, Overburden 4D time shifts induced by reservoir compaction at Snorre field: *The Leading Edge*.

• Røste, T., A. Stovas, and M. Landrø, 2005, Estimation of layer thickness and velocity changes using 4D prestack seismic data: *67th EAGE, Extended Abstracts, C010*.

• Hatchell, P.J., R.S. Kawar, and A.A. Savitski, 2005, Integrating 4D seismic, geomechanics and reservoir simulation in the Valhall Oil Field: *67th EAGE, Extended Abstracts, C012*.